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1 Introduction

This tutorial note includes some results from Fourier theory which are useful in the study of Visual Motion.
In particular, we derive the spectral properties of a image subject uniform translational motion, which is a
classic result used to develop insight into the more general case.

Additionally some results regarding multidimensional directional derivatives are also presented. These
often crop up in the context of models of spatio-temporal filters used in early vision. These results are
useful for understanding various classes of rotation invariant filters which have gained some popularity in
the motion estimation community.

Finally, the Fourier transform of a Gaussian function is derived in full detail. This is an annoyingly
simple result which nevertheless seldom finds its way into textbooks.

2 Uniform Translational Motion

Let I0(x, y) denote an intensity image with continuous spatial variables x, y. Assume that the intensity
image undergoes uniform translational motion with horizontal velocity component Vx and vertical velocity
component Vy. The resulting spatiotemporal intensity function I(x, y, t) is related to the still frame I0(x, y)
according to,

I(x, y, t) = I0(x − Vxt − x0, y − Vyt − y0), (1)

where x0, y0 denote the horizontal and vertical displacement of I(x, y) at t = 0. For convenience it is assumed
that x0 = y0 = 0 so,

I(x, y, t) = I0(x − Vxt, y − Vyt). (2)

3 The Fourier Domain Representation of Uniform Translational

Motion

The simple case of uniform translational motion admits a closed-form spatiotemporal frequency domain
description which provides useful insight into the motion problem. Let ωx, ωy and ωt denote the two spatial

frequency and one temporal frequency variable respectively. We seek an expression for Î(ωx, ωy, ωt) =
F {I(x, y, t)}, where F {·} denotes the Fourier transform operation.
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From Equation (2) we have I(x, y, t) = I0(x − Vxt, y − Vyt) so,

Î(ωx, ωy, ωt) = F {I(x, y, t)}

=

∫∫∫ +∞

−∞
I(x, y, t) e−i(ωxx+ωyy+ωtt) dx dy dt

=

∫∫∫ +∞

−∞
I0(x − Vxt, y − Vyt) e−i(ωxx+ωyy+ωtt) dx dy dt

Letting u = x − Vxt and v = y − Vyt,

=

∫∫∫ +∞

−∞
I0(u, v) e−i(ωx(u+Vxt)+ωy(v+Vyt)+ωtt) du dv dt

=

∫∫∫ +∞

−∞
I0(u, v) e−i(ωxu+ωxVxt+ωyv+ωyVyt+ωtt) du dv dt

=

∫ +∞

−∞

{
∫∫ +∞

−∞
I0(u, v) e−i(ωxu+ωyv) du dv

}

e−i(ωxVxt+ωyVyt+ωtt) dt

=

∫ +∞

−∞
Î0(ωx, ωy)e

−i(ωxVxt+ωyVyt+ωtt) dt

= Î0(ωx, ωy)

∫ +∞

−∞
e−i(ωxVx+ωyVy)te−iωtt dt

= Î0(ωx, ωy) δ(ωxVx + ωyVy + ωt). (3)

Equation (3) is a product of two terms:

• Î0(ωx, ωy)

This is the Fourier transform of the still image I0(x, y). In the spatiotemporal frequency space
ωx, ωy, ωt, Î(ωx, ωy) is constant for all ωt.

• δ(ωxVx + ωyVy + ωt)

This term describes a plane in spatiotemporal frequency space. The orientation of the plane in spa-
tiotemporal frequency space is determined by the horizontal and vertical motion velocities. The normal
vector of the plane is given by [Vx, Vy, 1]>.

Thus the spectral energy of the spatiotemporal intensity I(x, y, t) is constrained to lie in a plane in
spatiotemporal frequency space. In particular, the product in Equation (3) constrains the spectral energy
to the plane

[ωx, ωy, ωt][Vx, Vy , 1]> = ωxVx + ωyVy + ωt = 0,

with the value at a point ωx, ωy, ωt in the plane given by the value of Î0(ωx, ωy).

3.1 Temporal Aliasing

One interesting consequence of the Fourier domain expression for uniform translational motion is that an
image, spatially sampled so as to satisfy Nyquist’s criterion can result in frequency domain aliasing when
the signal undergoes translational motion.

4 Selected Fourier Transform Properties

4.1 Differentiation Properties

Let f(x) and f(ω) be a Fourier transform pair, then we may express f(x) in terms of F (ω) using the inverse
Fourier transform relation,

f(x) =
1

2π

∫ ∞

−∞
F (ω)eiwx dω.

2



Differentiating both sides yields,

d

dx
(f(x)) =

d

dx

(

1

2π

∫ ∞

−∞
F (ω)eiwx dω

)

=
1

2π

∫ ∞

−∞
iωF (ω)eiwx dω,

from which we note that,
d

dx
f(x) ⇐⇒ iωF (ω). (4)

Similarly, starting with the Fourier transform formula,

F (ω) =

∫ ∞

−∞
f(x)e−iωxdx

and differentiating with respect to ω yields the result,

d

dω
F (ω) ⇐⇒ −ixf(x) (5)

or equivalently, i d
dω

F (ω) ⇐⇒ xf(x).

In general, with x, ω ∈ R
N , if f(x) ⇐⇒ F (ω) represents a Fourier transform pair then, for k ∈

{1, 2, . . . , N} and pk ∈ {0, 1, . . . , N} such that

1 ≤
∑

pk
∆
=

N
∑

k=1

pk ≤ N

then,

∂
∑

pk

∏N

k=1 ∂x
pk

k

f(x) ⇐⇒
N
∏

k=1

(iωk)pkF (ω) (6)

and

∂
∑

pk

∏N

k=1 ∂ω
pk

k

F (ω) ⇐⇒
N
∏

k=1

(−ixk)pkf(x). (7)

4.2 Directional Derivatives

It is also useful to determine Fourier transform relations for directional derivatives. Let f(x) ⇐⇒ F (ω)
represent a Fourier transform pair with x, ω ∈ R

N . Let û be a unit vector in R
N and let Dû denote the

derivative operator in the direction û. With F {·} representing the Fourier transform we have,

F {Dûf(x)} = F {[û · ∇]f(x)}

= F
{

N
∑

k=1

uk

∂

∂xk

f(x)

}

=

N
∑

k=1

uk F
{

∂

∂xk

f(x)

}

=

N
∑

k=1

uk {iwkF (ω)}

= i[û · ω]F (ω).

We thus we conclude that,
Dûf(x) ⇐⇒ i[û · ω]F (ω). (8)
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We arrive at a similar relation for the directional derivative in the Fourier domain as,

DûF (ω) ⇐⇒ −i[û · x]f(x). (9)

For higher order directional derivatives, we note that Dn
û

= [û · ∇]n so that,

F {Dn
û
f(x)} = F {[û · ∇]

n
f(x)}

= F
{[

N
∑

k=1

uk

∂

∂xk

]n

f(x)

}

.

Here the expression in the brackets is an nth order polynomial containing all combinations of mixed partial
derivatives. Using Equation (6) the Fourier transform of the product of each of these terms with f(x) may
be expressed in the frequency domain and the resulting terms collected to yield the result,

Dn
û
f(x) ⇐⇒ in[û · ω]nF (ω). (10)

Similarly,
DûF (ω) ⇐⇒ (−i)n[û · x]nf(x). (11)

4.3 The Fourier Transform of a Gaussian

In this section we show that the Fourier transform of a Gaussian is also Gaussian. First we will require the
result that the Gaussian density integrates to unity,

∫ ∞

−∞

1√
2πσ

e−
x2

2σ2 dx = 1. (12)

This result may be shown as follows,

∫ ∞

−∞

1√
2πσ

e−
x2

2σ2 dx =

∫ ∞

−∞

1√
2πσ

e−
x2

2σ2 dx ·
∫ ∞

−∞

1√
2πσ

e−
y2

2σ2 dy with y = 0

=

∫ ∞

−∞

∫ ∞

−∞

1

2πσ2
e−

x2+y2

2σ2 dx dy

=

∫ 2π

0

∫ ∞

0

1

2πσ2
e−

r2

2σ2 r dr dθ

=

∫ 2π

0

− 1

2π

[
∫ ∞

0

e−
r2

2σ2 · − r

σ2
dr

]

dθ

=

∫ 2π

0

− 1

2π

[

e−
r2

2σ2

]∞

0
dθ

=

∫ 2π

0

1

2π
dθ

= 1.

We will use this result to show that the Fourier transform of a Gaussian in also a Gaussian (up to a scale
factor) but the variance σ2 of which is equal to the reciprocal of the variance of the original Gaussian.
Specifically, the Fourier transform relation we wish to show is given by,

1√
2πσ

e−
x2

2σ2 ⇐⇒ e
− ω2

2/σ2 . (13)
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Let F (ω) denote the Fourier transform of the function f(x). With f(x) = 1√
2πσ

e−
x2

2σ2 we have,

F (ω) =

∫ ∞

−∞
f(x)e−iωxdx

=

∫ ∞

−∞

1√
2πσ

e−
x2

2σ2 e−iωxdx

=
1√
2πσ

∫ ∞

−∞
e−

1

2σ2 x2−iωxdx

We may apply the technique of completing the square whereby we rewrite a quadratic equation ax2 + bx + c

in the alternate form,

ax2 + bx + c = a

(

x +
b

2a

)2

+

(

c − b2

4a

)

(14)

which, after some algebraic manipulation, yields

F (ω) =
1√
2πσ

∫ ∞

−∞
e−

1

2σ2 (x+iωσ2)
2− 1

2
ω2σ2

dx

= e−
1
2
ω2σ2

∫ ∞

−∞

1√
2πσ

e−
1

2σ2 (x+iωσ2)2

dx

= e
− ω2

2/σ2 .

The integral in the second to last line is equal to unity by our earlier result.
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