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Abstract

Growing interest in super-resolution (SR) restoration of
video sequences and the closely related problem of con-
struction of SR still images from image sequences has led
to the emergence of several competing methodologies. We
review the state of the art of SR techniques using a taxon-
omy of existing techniques. We critique these methods and
identify areas which promise performance improvements.

1. Introduction

The problem of spatial resolution enhancement of video
sequences has been an area of active research since the sem-
inal work by Tsai and Huang [20] which considers the prob-
lem of resolution enhanced stills from a sequence of low-
resolution (LR) images of a translated scene. Whereas in
the traditional single image restoration problem only a sin-
gle input image is available, the task of obtaining a super-
resolved image from an undersampled and degraded im-
age sequence can take advantage of the additional spatio-
temporal data available in the image sequence. In partic-
ular, camera and scene motion lead to frames in the video
sequence containing similar, but not identical information.
This additional information content, as well as the inclusion
of a-priori constraints, enables reconstruction of a super-
resolved image with wider bandwidth than that of any of
the individual LR frames.

Much of the SR literature addresses the problem of pro-
ducing SR still images from a video sequence – several LR
frames are combined to produce a single SR frame. These
techniques may be applied to video restoration by comput-
ing successive SR frames from a “sliding window” of LR
frames.

SR reconstruction is an example of anill-posed inverse
problem – a multiplicity of solutions exist for a given set
of observation images. Such problems may be tackled by
constraining the solution space according toa-priori knowl-

edge of the form of the solution (smoothness, positivity etc.)
Inclusion of such constraints is critical to achieving high
quality SR reconstructions.

We categorize SR reconstruction methods into two main
divisions – frequency domain (Section 2) and spatial do-
main (Section 3). We review the state of the art and identify
promising directions for future research (Sections 4 and 5
respectively).

2. Frequency Domain Methods

A major class of SR methods utilize a frequency domain
formulation of the SR problem. Frequency domain methods
are based on three fundamental principles:i) the shifting
property of the Fourier transform (FT),ii) the aliasing re-
lationship between the continuous Fourier transform (CFT)
and the discrete Fourier transform (DFT),iii) the original
scene is band-limited. These properties allow the formu-
lation of a system of equations relating the aliased DFT
coefficients of the observed images to samples of the CFT
of the unknown scene. These equations are solved yield-
ing the frequency domain coefficients of the original scene,
which may then be recovered by inverse DFT. Formula-
tion of the system of equations requires knowledge of the
translational motion between frames to sub-pixel accuracy.
Each observation image must contributeindependentequa-
tions, which places restrictions on the inter-frame motion
that contributes useful data.

Denote the continuous scene byf(x; y). Global trans-
lations yieldR shifted images,fr(x; y) = f(x+�xr ; y+
�yr); r = 1; 2; : : : ;R. The CFT of the scene is given
by F(u; v) and that of the translations byFr(u; v). The
shifted images are impulse sampled to yield observed im-
agesyr[m;n] = f(mTx +�xr; nTy +�yr) with m =
0; 1; : : : ;M�1 andn=0; 1; : : : ;N�1. TheR corresponding
2D DFT’s are denotedYr[k; l]. The CFT of the scene and
the DFT’s of the shifted and sampled images are related via
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wherefsx =1=Tx andfsy =1=Ty are the sampling rates in
the x andy dimensions respectively and� = 1=(TxTy).
The shifting property of the CFT relates spatial domain
translation to the frequency domain as phase shifting as,

Fr(u; v) = ej2�(�xru+�yrv)F(u; v): (2)

If f(x; y) is band-limited,9 Lu; Lv s.t. F(u; v) ! 0 for
juj � Lufsx andjvj � Lvfsy . Assumingf(x; y) is band-
limited, we may use (2) to rewrite the alias relationship (1)
in matrix form as,

Y = �F: (3)

Y is aR� 1 column vector with therth element being the
DFT coefficientsYr [k; l] of the observed imageyr[m;n].
� is a matrix which relates the DFT of the observation data
to samples of the unknown CFT off(x; y) contained in the
4LuLv � 1 vectorF. SR reconstruction thus requires find-
ing the DFT’s of theR observed images, determining�
(motion estimation), solving the system of equations (3) for
F and applying the inverse DFT to obtain the reconstructed
image. Several extensions to the basic Tsai-Huang method
have been proposed. A LSI blur PSF is included in [17]
and the equivalent of (3) is solved using a least squares ap-
proach to mitigate the effects of observation noise and in-
sufficient observation data. A computationally efficient re-
cursive least squares (RLS) solution for (3) is proposed in
[10] and extended with a Tikhonov regularization solution
method in [11] in an attempt to address the ill-posedness of
SR inverse problem. Robustness to errors in observations
as well as�motivated the use of a total least squares (TLS)
approach in [1] which is implemented using a recursive al-
gorithm for computational efficiency.

Techniques based on the multichannel sampling theorem
[2] have also been considered [21]. Though implemented
in the spatial domain, the technique is fundamentally a fre-
quency domain method relying on the shift property of the
Fourier transform to model the translation of the source im-
agery.

Frequency domain SR methods provide the advantages
of theoretical simplicity, low computational complexity, are
highly amenable to parallel implementation due to decou-
pling of the frequency domain equations (3) and exhibit an
intuitive de-aliasing SR mechanism. Disadvantages include
the limitation to global translational motion and space in-
variant degradation models (necessitated by the requirement
for a Fourier domain analog of the spatial domain motion
and degradation model) and limited ability for inclusion of
spatial domaina-priori knowledge for regularization.

3. Spatial Domain Methods

In this class of SR reconstruction methods, the obser-
vation model is formulated, and reconstruction is effected
in the spatial domain. The linear spatial domain observa-
tion model can accommodate global and non-global motion,
optical blur, motion blur, spatially varying PSF, non-ideal
sampling, compression artifacts and more. Spatial domain
reconstruction allows natural inclusion of (possibly nonlin-
ear) spatial domaina-priori constraints (e.g. Markov ran-
dom fields or convex sets) which result in bandwidth ex-
trapolation in reconstruction.

Consider estimating a SR imagez from multiple LR im-
agesyr; r 2 f1; 2; : : : ; Rg . Images are written as lex-
icographically ordered vectors.yr and z are related as
yr = Hrz. The matrixHr, which must be estimated,
incorporates motion compensation, degradation effects and
subsampling. The observation equation may be generalized
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with N representing observation noise.

3.1. Interpolation of Non-Uniformly Spaced Samples

Registering a set of LR images using motion compen-
sation results in a single, dense composite image of non-
uniformly spaced samples. A SR image may be recon-
structed from this composite using techniques for recon-
struction from non-uniformly spaced samples. Restoration
techniques are sometimes applied to compensate for degra-
dations [17]. Iterative reconstruction techniques, based
on the Landweber iteration, have also been applied [12].
Such interpolation methods are unfortunately overly sim-
plistic. Since the observed data result from severely under-
sampled, spatially averaged areas, the reconstruction step
(which typically assumes impulse sampling) is incapable
of reconstructing significantly more frequency content than
is present in a single LR frame. Degradation models are
limited, and noa-priori constraints are used. There is
also question as to the optimality of separate merging and
restoration steps.

3.2. Iterated Backprojection

Given a SR estimatêz and the imaging modelH, it is
possible tosimulatethe LR imageŝY asŶ = Hẑ. Iterated
backprojection (IBP) procedures update the estimate of the
SR reconstruction bybackprojectingthe error between the
jth simulated LR imageŝY(j) and the observed LR images
Y via the backprojection operatorHBP which apportions
“blame” to pixels in the SR estimatêz(j). TypicallyHBP



approximatesH�1. Algebraically,
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Equation (4) is iterated until some error criterion de-
pendent onY; Ŷ(j) is minimized. Application of the IBP
method may be found in [9]. IBP enforces that the SR re-
construction match (via the observation equation) the ob-
served data. Unfortunately the SR reconstruction is not
unique since SR is an ill-posed inverse problem. Inclu-
sion ofa-priori constraints is not easily achieved in the IBP
method.

3.3. Stochastic SR Reconstruction Methods

Stochastic methods (Bayesian in particular) which treat
SR reconstruction as a statistical estimation problem have
rapidly gained prominence since they provide a powerful
theoretical framework for the inclusion ofa-priori con-
straints necessary for satisfactory solution of the ill-posed
SR inverse problem. The observed dataY, noiseN and
SR imagez are assumed stochastic. Consider now the
stochasticobservation equationY = Hz +N. TheMax-
imum A-Posteriori(MAP) approach to estimatingz seeks
the estimatêzMAP for which thea-posterioriprobability,
PrfzjYg is a maximum. Formally, we seek̂zMAP as,

ẑMAP = argmaxz [Pr fzjYg]
= argmaxz [logPr fYjzg+ logPr fzg] :

(5)
The second line is found by applying Bayes’ rule, rec-
ognizing that̂zMAP is independent ofPrfYg and taking
logarithms. The termlogPr fYjzg is the log-likelihood
function and Pr fzg is the a-priori density of z. Since
Y = Hz + N, the likelihood function is determined by
the PDF of the noise asPr fYjzg = fN (Y �Hz). It is
common to utilize Markov random field (MRF) image mod-
els as the prior termPr fzg. Under typical assumptions of
Gaussian noise the prior may be chosen to ensure a convex
optimization in (5) enabling the use of descent optimiza-
tion procedures. Examples of the application of Bayesian
methods to SR reconstruction may be found in [15] using a
Huber MRF and [3, 7] with a Gaussian MRF.

Maximum likelihood (ML) estimation has also been ap-
plied to SR reconstruction [18]. ML estimation is a special
case of MAP estimation (no prior term). Since the inclu-
sion ofa-priori information is essential for the solution of
ill-posed inverse problems, MAP estimation should be used
in preference to ML.

A major advantage of the Bayesian framework is the di-
rect inclusion ofa-priori constraints on the solution, often
as MRF priors which provide a powerful method for image

modeling using (possibly non-linear) local neighbor inter-
action. MAP estimation with convex priors implies a glob-
ally convex optimization, ensuring solution existence and
uniqueness allowing the application of efficient descent op-
timization methods. Simultaneous motion estimation and
restoration is also possible [7]. The rich area of statistical
estimation theory is directly applicable to stochastic SR re-
construction methods.

3.4. Set Theoretic Reconstruction Methods

Set theoretic methods, especially the method of projec-
tion onto convex sets (POCS), are popular as they are sim-
ple, utilize the powerful spatial domain observation model,
and allow convenient inclusion ofa priori information. In
set theoretic methods, the space of SR solution images is
intersected with a set of (typically convex) constraint sets
representing desirable SR image characteristics such as pos-
itivity, bounded energy, fidelity to data, smoothness etc., to
yield a reduced solution space. POCS refers to an iterative
procedure which, given any point in the space SR images,
locates a point which satisfies all the convex constraint sets.

Convex sets which represent constraints on the solu-
tion space ofz are defined. Data consistency is typically
represented by a setfz : jY �Hzj < Æ0g, positivity by
fz : zi > 0 8ig, bounded energy byfz : kzk � Eg, com-
pact supportfz : zi = 0; i 2 Ag and so on. For each con-
vex constraint set so defined, aprojection operatoris deter-
mined. The projection operatorP� associated with the con-
straint setC� projects a point in the space ofz onto the clos-
est point on the surface ofC�. It can be shown that repeated
application of the iteration,z(n+1) = P1P2P3 � � � PKz

(n)

will result in convergence to a solution on the surface of
the intersection of theK convex constraints sets. Note that
this point is in general non-unique and is dependent on the
initial guess. POCS reconstruction methods have been suc-
cessfully applied to sophisticated observation and degrada-
tion models [13, 6].

An alternate set theoretic SR reconstruction method [19]
uses an ellipsoid to bound the constraint sets. The centroid
of this ellipsoid is taken as the SR estimate. Since direct
computation of this point is infeasible, an iterative solution
method is used.

The advantages of set theoretic SR reconstruction tech-
niques were discussed at the beginning of this section.
These methods have the disadvantages of non-uniqueness
of solution, dependence of the solution on the initial guess,
slow convergence and high computational cost. Though the
bounding ellipsoid method ensures a unique solution, this
solution is has no claim to optimality.



3.5. Hybrid ML/MAP/POCS Methods

Work has been undertaken on combined
ML/MAP/POCS based approaches to SR reconstruc-
tion [15, 5]. The desirable characteristics of stochastic
estimation and POCS are combined in a hybrid opti-
mization method. Thea-posteriori density or likelihood
function is maximized subject to containment of the
solution in the intersection of the convex constraint sets.

3.6. Optimal and Adaptive Filtering

Inverse filtering approaches to SR reconstruction have
been proposed, however these techniques are limited in
terms of inclusion ofa-priori constraints as compared with
POCS or Bayesian methods and are mentioned only for
completeness. Techniques based on adaptive filtering, have
also seen application in SR reconstruction [14, 4]. These
methods are in effect LMMSE estimators and do not in-
clude non-lineara-priori constraints.

3.7. Tikhonov-Arsenin Regularization

Due the the ill-posedness of SR reconstruction,
Tikhonov-Arsenin regularized SR reconstruction methods
have been examined [8]. The regularizing functionals char-
acteristic of this approach are typically special cases of
MRF priors in the Bayesian framework.

4. Summary and Comparison

A general comparison of frequency and spatial domain
SR reconstructions methods is presented in Table 1.

Freq. Domain Spat. Domain

Observation model Frequency domain Spatial domain
Motion models Global translation Almost unlimited
Degradation model Limited, LSI LSI or LSV
Noise model Limited, SI Very Flexible
SR Mechanism De-aliasing De-aliasing

A-priori info
Computation req. Low High
A-priori info Limited Almost unlimited
Regularization Limited Excellent
Extensibility Poor Excellent
Applicability Limited Wide
App. performance Good Good

Table 1. Frequency vs. spatial domain SR

Spatial domain SR reconstruction methods, though com-
putationally more expensive, and more complex than their

frequency domain counterparts, offer important advantages
in terms of flexibility. Two powerful classes of spatial do-
main methods; the Bayesian (MAP) approach and the set
theoretic POCS methods are compared in Table 2.

Bayesian (MAP) POCS

Applicable theory Vast Limited
A-priori info Prior PDF Convex Sets

Easy to incorporate Easy to incorporate
No hard constraints Powerful yet simple

SR solution Unique Non-unique
MAP estimate \ of constraint sets

Optimization Iterative Iterative
Convergence Good Possibly slow
Computation req. High High
Complications Optimization under Defn. of projection

non-convex priors operators

Table 2. MAP vs. POCS SR

5. Directions for Future Research

Three research areas promise improved SR methods:
Motion Estimation : SR enhancement of arbitrary

scenes containing global, multiple independent motion,
occlusions, transparency etc. is a focus of SR research.
Achieving this is critically dependent on robust, model
based, sub-pixel accuracy motion estimation and segmen-
tation techniques – presently an open research problem.
Motion is typically estimated from the observedundersam-
pled data – the reliability of these estimates should be in-
vestigated. Simultaneous multi-frame motion estimation
should provide performance and reliability improvements
over common two frame techniques. For non-parametric
motion models, constrained motion estimation methods
which ensure consistency in motion maps should be used.
Regularized motion estimation methods should be utilized
to resolve the ill-posedness of the motion estimation prob-
lem. Sparse motion maps should be considered. Sparse
maps typically provide accurate motion estimates in areas
of high spatial variance – exactly where SR techniques de-
liver greatest enhancement. Reliability measures associated
with motion estimates should enable weighted reconstruc-
tion. Global and local motion models, combined with it-
erative motion estimation, identification and segmentation
provide a framework for general scene SR enhancement.
Independent model based motion predictors and estimators
should be utilized for independently moving objects. Si-
multaneous motion estimation and SR reconstruction ap-
proaches should yield improvements in both motion esti-
mates and SR reconstruction.



Degradation Models: Accurate degradation (observa-
tion) models promise improved SR reconstructions. Sev-
eral SR application areas may benefit from improved degra-
dation modeling. Only recently has color SR reconstruc-
tion been addressed [16]. Improved motion estimates and
reconstructions are possible by utilizing correlated infor-
mation in color bands. Degradation models for lossy
compression schemes (color subsampling and quantization
effects) promise improved reconstruction of compressed
video. Similarly, considering degradations inherent in mag-
netic media recording and playback are expected to improve
SR reconstructions from low cost camcorder data. The re-
sponse of typical commercial CCD arrays departs consider-
ably from the simple integrate and sample model prevalent
in much of the literature. Modeling of sensor geometry,
spatio-temporal integration characteristics, noise and read-
out effects promise more realistic observation models which
are expected to result in SR reconstruction performance im-
provements.

Restoration Algorithms: MAP and POCS based al-
gorithms are very successful and to a degree, complimen-
tary. Hybrid MAP/POCS restoration techniques will com-
bine the mathematical rigor and uniqueness of solution of
MAP estimation with the convenienta-priori constraints of
POCS. The hybrid method is MAP based but with constraint
projections inserted into the iterative maximization of the
a-posterioridensity in a generalization of the constrained
MAP optimization of [15]. Simultaneous motion estimation
and restoration yields improved reconstructions since mo-
tion estimation and reconstruction are interrelated. Separate
motion estimation and restoration, as is commonly done,
is sub-optimal as a result of this interdependence. Simul-
taneous multi-frame SR restoration is expected to achieve
higher performance since additional spatio-temporal con-
straints on the SR image ensemble may be included. This
technique has seen limited application in SR reconstruction.
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